Modified alumina nanofiber membranes for protein separation

Ke, Xuebin, Huang, Yiming, Dargaville, Tim R., Fan, Yiqun, Cui, Zhanfeng, & Zhu, Huai (2013) Modified alumina nanofiber membranes for protein separation. Separation and Purification Technology, 120, pp. 239-244.

View at publisher


Large-scale purification/separation of bio-substances is a key technology required for rapid production of biological substances in bioengineering. Membrane filtration is a new separation process and has potential to be used for concentration (removal of solvent), desalting (removal of low molecular weight compounds), clarification (removal of particles), and fractionation (protein-protein separation). In this study, we developed an efficient membrane for protein separation based on ceramic nanofibers. Alumina nanofibers were prepared on a porous support and formed large flow passages. The radical changes in membrane structure provided new ceramic membranes with a large porosity (more than 70%) due to the replacement of bulk particles with fine fibers as building components. The pore size had an average of 11 nm and pure water flux was approximately 360 L•h-1•m-2•bar-1. Further surface modification with a self-assembled monolayer of (3-aminopropyl) triethoxysilane enhanced the membrane filtration properties. Characterization with SEM, FTIR, contact angle, and proteins separation tests indicated that the fibril layers uniformly spread on the surface of the porous support. Moreover, the membrane surface was changed from hydrophilic to hydrophobic after silane groups were grafted. It demonstrated that the silane-grafted alumina fiber membrane can reject 100% BSA protein and 92% cellulase protein. It was also able to retain 75% trypsin protein while maintaining a permeation flux of 48 L•h-1•m-2•bar-1.

Impact and interest:

10 citations in Scopus
Search Google Scholar™
11 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

29 since deposited on 28 Oct 2013
10 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 63769
Item Type: Journal Article
Refereed: Yes
Keywords: alumina nanofiber, membrane, protein separation;, silane grafting;, bovine serum albumin
DOI: 10.1016/j.seppur.2013.10.011
ISSN: 1383-5866
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Colloid and Surface Chemistry (030603)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CHEMICAL ENGINEERING (090400) > Membrane and Separation Technologies (090404)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > INDUSTRIAL BIOTECHNOLOGY (100300) > Bioprocessing Bioproduction and Bioproducts (100302)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 Elsevier
Copyright Statement: This is the author’s version of a work that was accepted for publication in Separation and Purification Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Separation and Purification Technology, [VOL 120, (2013)] DOI: 10.1016/j.seppur.2013.10.011
Deposited On: 28 Oct 2013 22:43
Last Modified: 16 Sep 2016 09:28

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page