Effect of aerobic interval training and caffeine on blood platelet function

Whittaker, Joshua P., Linden, Matthew D., & Coffey, Vernon G. (2013) Effect of aerobic interval training and caffeine on blood platelet function. Medicine and Science in Sports and Exercise, 45(2), pp. 342-350.

View at publisher


Purpose: Hyperactive platelets contribute to the thrombotic response in humans, and exercise transiently increases platelet function. Caffeine is routinely used by athletes as an ergogenic aid, but the combined effect of exercise and caffeine on platelet function has not been investigated. Methods: Twelve healthy males were randomly assigned to one of four groups and undertook four experimental trials of a high-intensity aerobic interval training (AIT) bout or rest with ingestion of caffeine (3 mg·kg-1) or placebo. AIT was 8 × 5 min at approximately 75% peak power output (approximately 80% V?O2peak) and 1-min recovery (approximately 40% peak power output, approximately 50% V?O2peak) intervals. Blood/urine was collected before, 60, and 90 min after capsule ingestion and analyzed for platelet aggregation/activation. Results: AIT increased platelet reactivity to adenosine diphosphate (placebo 30.3%, caffeine 13.4%, P < 0.05) and collagen (placebo 10.8%, caffeine 5.1%, P < 0.05) compared with rest. Exercise placebo increased adenosine diphosphate-induced aggregation 90 min postingestion compared with baseline (40.5%, P < 0.05), but the increase when exercise was combined with caffeine was small (6.6%). During the resting caffeine protocol, collagen-induced aggregation was reduced (-4.3%, P < 0.05). AIT increased expression of platelet activation marker PAC-1 with exercise placebo (P < 0.05) but not when combined with caffeine. Conclusion: A single bout of AIT increases platelet function, but caffeine ingestion (3 mg·kg) does not exacerbate platelet function at rest or in response to AIT. Our results provide new information showing caffeine at a dose that can elicit ergogenic effects on performance has no detrimental effect on platelet function and may have the potential to attenuate increases in platelet activation and aggregation when undertaking strenuous exercise.

Impact and interest:

5 citations in Scopus
4 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 64119
Item Type: Journal Article
Refereed: Yes
Keywords: Aggregation, exercise, platelet activation, thrombosis
DOI: 10.1249/MSS.0b013e31827039db
ISSN: 0195-9131
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600) > Exercise Physiology (110602)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > NUTRITION AND DIETETICS (111100) > Clinical and Sports Nutrition (111101)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Exercise & Nutrition Sciences
Deposited On: 07 Nov 2013 03:55
Last Modified: 07 Nov 2013 22:18

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page