Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints

Coffey, Vernon G., Moore, Daniel R., Burd, Nicholas A., Rerecich, Tracy, Stellingwerff, Trent, Garnham, Andrew P., Phillips, Stuart M., & Hawley, John A. (2011) Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. European Journal of Applied Physiology, 111(7), pp. 1473-1483.

View at publisher

Abstract

The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg -1, 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L-[ring- 13C 6] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo ( ? 48%, P<0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6KrpS6 phosphorylation 15 min post-exercise (?200-600%, P<0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.

Impact and interest:

39 citations in Scopus
Search Google Scholar™
37 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 64135
Item Type: Journal Article
Refereed: Yes
DOI: 10.1007/s00421-010-1768-0
ISSN: 1439-6327
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > HUMAN MOVEMENT AND SPORTS SCIENCE (110600) > Exercise Physiology (110602)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > NUTRITION AND DIETETICS (111100) > Clinical and Sports Nutrition (111101)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Deposited On: 07 Nov 2013 23:51
Last Modified: 12 Nov 2013 04:37

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page