Localization of Mineralocorticoid Receptors at Mammalian Synapses

Valdes-Sosa, Pedro Antonio, Prager, Eric M., Brielmaier, Jennifer, Bergstrom, Hadley C., McGuire, Jennifer, & Johnson, Luke R. (2010) Localization of Mineralocorticoid Receptors at Mammalian Synapses. PLoS ONE, 5(12), e14344-e14344.

View at publisher (open access)

Abstract

In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

Impact and interest:

32 citations in Scopus
30 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

35 since deposited on 07 Nov 2013
0 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 64176
Item Type: Journal Article
Refereed: Yes
Keywords: amygdaloid nucleus; animal cell; animal tissue; article; controlled study; dendritic spine; electron microscopy; GABAergic transmission; immunoblotting; male; memory; nerve cell excitability; nerve cell plasticity; neuromodulation; nonhuman; presynaptic p
DOI: 10.1371/journal.pone.0014344
ISSN: 1932-6203
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > NEUROSCIENCES (110900)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Copyright Owner: The authors
Copyright Statement: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public
domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Deposited On: 07 Nov 2013 11:07
Last Modified: 19 Jul 2017 19:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page