Traffic safety risks trends and patterns analysis on motorways

Hamzehei, Asso, Chung, Edward, & Miska, Marc (2014) Traffic safety risks trends and patterns analysis on motorways. In The Transportation Research Board (TRB) 93rd Annual Meeting, 12-16 January 2014, Washington, D.C.


Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestion. Hence, reducing the frequency of crashes assist in addressing congestion issues (Meyer, 2008). Analysing traffic conditions and discovering risky traffic trends and patterns are essential basics in crash likelihood estimations studies and still require more attention and investigation. In this paper we will show, through data mining techniques, that there is a relationship between pre-crash traffic flow patterns and crash occurrence on motorways, compare them with normal traffic trends, and that this knowledge has the potentiality to improve the accuracy of existing crash likelihood estimation models, and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash occurrence. K-Means clustering algorithm applied to determine dominant pre-crash traffic patterns. In the first phase of this research, traffic regimes identified by analysing crashes and normal traffic situations using half an hour speed in upstream locations of crashes. Then, the second phase investigated the different combination of speed risk indicators to distinguish crashes from normal traffic situations more precisely. Five major trends have been found in the first phase of this paper for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Moreover, the second phase explains that spatiotemporal difference of speed is a better risk indicator among different combinations of speed related risk indicators. Based on these findings, crash likelihood estimation models can be fine-tuned to increase accuracy of estimations and minimize false alarms.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

89 since deposited on 18 Nov 2013
9 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 64604
Item Type: Conference Paper
Refereed: Yes
Additional URLs:
Keywords: Traffic Flow Regimes, Traffic Flow Trends, Motorway Crashes, Risky and Normal Traffic, Clustering
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Pattern Recognition and Data Mining (080109)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Transport Engineering (090507)
Divisions: Current > Schools > School of Civil Engineering & Built Environment
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Current > Research Centres > Smart Transport Research Centre
Copyright Owner: Copyright 2013 Please consult the authors
Deposited On: 18 Nov 2013 22:31
Last Modified: 09 Apr 2014 17:57

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page