Effect of palygorskite clay on pyrolysis of rape straw : an in situ catalysis study

Liu, Haibo, Chen, Tianhu, Chang, Dongyin, Chen, Dong, Xie, Jingjing, & Frost, Ray L. (2014) Effect of palygorskite clay on pyrolysis of rape straw : an in situ catalysis study. Journal of Colloid and Interface Science, 417, pp. 264-269.

View at publisher


Biomass tar restricts the wide application and development of biomass gasification technology. In the present paper, palygorskite, a natural magnesium-containing clay mineral, was investigated for catalytic pyrolysis of rape straw in situ and compared with the dolomite researched widely. The two types of natural minerals were characterized with XRD and BET. The results showed that combustible gas derived from the pyrolysis increased with an increase in gasification temperature. The Hconversion and Cconversion increased to 44.7% and 31% for the addition of palygorskite and increased to 41.3% and 31.3% for the addition of dolomite at the gasification temperature of 800 °C, compared with 15.1% and 5.6% without addition of the two types of material. It indicated that more biomass was converted into combustible gases implying the decrease in biomass tar under the function of palygorskite or dolomite and palygorskite had a slightly better efficiency than that of dolomite in the experimental conditions.

Impact and interest:

4 citations in Scopus
Search Google Scholar™
3 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

20 since deposited on 08 Jan 2014
4 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 65742
Item Type: Journal Article
Refereed: Yes
Keywords: In situ catalytic cracking, Palygorskite clay, Dolomite, Pyrolysis
DOI: 10.1016/j.jcis.2013.11.041
ISSN: 00219797
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 Elsevier Inc.
Copyright Statement: NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Colloid and Interface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Colloid and Interface Science, [Volume 417, (1 March 2014)] DOI: 10.1016/j.jcis.2013.11.041
Deposited On: 08 Jan 2014 02:14
Last Modified: 01 Mar 2016 14:39

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page