DRB2 is required for microRNA biogenesis in Arabidopsis thaliana

Eamens, Andrew L, Kim, Ki Wook, Curtin, Shaun J, & Waterhouse, Peter M. (2012) DRB2 is required for microRNA biogenesis in Arabidopsis thaliana. PloS One, 7(4), e35933.

View at publisher (open access)

Abstract

Background

The Arabidopsis thaliana (Arabidopsis) DOUBLE-STRANDED RNA BINDING (DRB) protein family consists of five members, DRB1 to DRB5. The biogenesis of two developmentally important small RNA (sRNA) species, the microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) by DICER-LIKE (DCL) endonucleases requires the assistance of DRB1 and DRB4 respectively. The importance of miRNA-directed target gene expression in plant development is exemplified by the phenotypic consequence of loss of DRB1 activity (drb1 plants). Principal Findings

Here we report that the developmental phenotype of the drb235 triple mutant plant is the result of deregulated miRNA biogenesis in the shoot apical meristem (SAM) region. The expression of DRB2, DRB3 and DRB5 in wild-type seedlings is restricted to the SAM region. Small RNA sequencing of the corresponding tissue of drb235 plants revealed altered miRNA accumulation. Approximately half of the miRNAs detected remained at levels equivalent to those of wild-type plants. However, the accumulation of the remaining miRNAs was either elevated or reduced in the triple mutant. Examination of different single and multiple drb mutants revealed a clear association between the loss of DRB2 activity and altered accumulation for both the elevated and reduced miRNA classes. Furthermore, we show that the constitutive over-expression of DRB2 outside of its wild-type expression domain can compensate for the loss of DRB1 activity in drb1 plants. Conclusions/Significance

Our results suggest that in the SAM region, DRB2 is both antagonistic and synergistic to the role of DRB1 in miRNA biogenesis, adding an additional layer of gene regulatory complexity in this developmentally important tissue.

Impact and interest:

24 citations in Scopus
21 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

27 since deposited on 07 Jan 2014
5 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 65790
Item Type: Journal Article
Refereed: Yes
DOI: 10.1371/journal.pone.0035933
ISSN: 1932-6203
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000)
Divisions: Current > Schools > School of Earth, Environmental & Biological Sciences
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Funding:
Copyright Owner: The authors
Deposited On: 07 Jan 2014 23:25
Last Modified: 09 Apr 2014 12:20

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page