A stimulatory effect of Ca3ZrSi2O9 bioceramics on cementogenic/osteogenic differentiation of periodontal ligament cells

Zhang, Xufang, Han, Pingping, Jaiprakash, Anjali, Wu, Chengtie, & Xiao, Yin (2014) A stimulatory effect of Ca3ZrSi2O9 bioceramics on cementogenic/osteogenic differentiation of periodontal ligament cells. Journal of Materials Chemistry B : Materials for Biology and Medicine, 2(10), pp. 1415-1423.

View at publisher


The regeneration of periodontal tissues to cure periodontitis remains a medical challenge. Therefore, it is of great importance to develop a novel biomaterial that could induce cementogenesis and osteogenesis in periodontal tissue engineering. Calcium silicate (Ca–Si) based ceramics have been found to be potential bioactive materials due to their osteostimulatory effect. Recently, it is reported that zirconium modified calcium-silicate-based (Ca3ZrSi2O9) ceramics stimulate cell proliferation and osteogenic differentiation of osteoblasts. However, it is unknown whether Ca3ZrSi2O9 ceramics possess specific cementogenic stimulation for human periodontal ligament cells (hPDLCs) in periodontal tissue regeneration in vitro. The purpose of this study was to investigate whether Ca3ZrSi2O9 ceramic disks and their ionic extracts could stimulate cell growth and cementogenic/osteogenic differentiation of hPDLCs; the possible molecular mechanism involved in this process was also explored by investigating the Wnt/β-catenin signalling pathway of hPDLCs. Our results showed that Ca3ZrSi2O9 ceramic disks supported cell adhesion, proliferation and significantly up-regulated relative alkaline phosphatase (ALP) activity, cementogenic/osteogenic gene expression (CEMP1, CAP, ALP and OPN) and Wnt/β-catenin signalling pathway-related genes (AXIN2 and CTNNB) for hPDLCs, compared to that of β-tricalcium phosphate (β-TCP) bioceramic disks and blank controls. The ionic extracts from Ca3ZrSi2O9 powders also significantly enhanced relative ALP activity, cementogenic/osteogenic and Wnt/β-catenin-related gene expression of hPDLCs. The present results demonstrate that Ca3ZrSi2O9 ceramics are capable of stimulating cementogenic/osteogenic differentiation of hPDLCs possibly via activation of the Wnt/β-catenin signalling pathway, suggesting that Ca3ZrSi2O9 ceramics have the potential to be used for periodontal tissue regeneration.

Impact and interest:

7 citations in Scopus
7 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 65837
Item Type: Journal Article
Refereed: Yes
Keywords: Ca3ZrSi2O9 bioceramics, cementogenic/osteogenic differentiation, periodontal ligament cells, Wnt/Beta-catenin signalling pathway
DOI: 10.1039/C3TB21663B
ISSN: 2050-750X
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomaterials (090301)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 17 Feb 2014 00:24
Last Modified: 11 Mar 2014 01:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page