QUT ePrints

Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate

Vernon, Kristy C., Gramotnev, Dmitri K., & Pile, David F. P. (2007) Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. Journal of Applied Physics, 101, p. 104312.

View at publisher

Abstract

We demonstrate that efficient adiabatic nanofocusing of plasmons can be achieved using a sharp metal wedge (thin tapered film) on a dielectric substrate. It is shown that the quasi-symmetric (with respect to the charge distribution across the wedge) plasmon mode can experience infinite adiabatic slowing down with both its phase and group velocities reducing to zero as the plasmon propagates towards the tip of the wedge. Conditions for strong local field enhancement near the tip are determined and analyzed. In particular, it is demonstrated that the electric field in the plasmon experiences much stronger local enhancement than the magnetic field. Two distinct asymptotic regimes with the electric field amplitude approaching either zero or infinity at the tip of the wedge (tapered film) are described. The results are compared to adiabatic nanofocusing of plasmons by metallic V-grooves and sharp metal wedges in a uniform dielectric.

Impact and interest:

37 citations in Scopus
Search Google Scholar™
38 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

234 since deposited on 19 Mar 2007
37 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 6586
Item Type: Journal Article
Keywords: Surface plasmons, Nanofocusing, Near, field microscopy, Nano, optics, Optical sensors
DOI: 10.1063/1.2732699
ISSN: 1089-7550
Subjects: Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > CONDENSED MATTER PHYSICS (020400) > Condensed Matter Physics not elsewhere classified (020499)
Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > OPTICAL PHYSICS (020500) > Optical Physics not elsewhere classified (020599)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000) > NANOTECHNOLOGY (100700) > Nanotechnology not elsewhere classified (100799)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2007 American Institute of Physics
Copyright Statement: Reproduced in accordance with the copyright policy of the publisher.
Deposited On: 19 Mar 2007
Last Modified: 29 Feb 2012 23:38

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page