Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeiashan large igneous province

Hong, Zhong, Campbell, Ian H., Wei-Guang, Zhue, Allen, Charlotte M., Rui-Zhong, Hu, Lie-Wen, Xie, & De-Feng, He (2011) Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeiashan large igneous province. Geochimica et Cosmochimica Acta, 75(5), pp. 1374-1395.

View at publisher


Several I- and A-type granite, syenite plutons and spatially associated, giant Fe–Ti–V deposit-bearing mafic ultramafic layered intrusions occur in the Pan–Xi(Panzhihua–Xichang) area within the inner zone of the Emeishan large igneous province (ELIP). These complexes are interpreted to be related to the Emeishan mantle plume. We present LA-ICP-MS and SIMS zircon U–Pb ages and Hf–Nd isotopic compositions for the gabbros, syenites and granites from these complexes. The dating shows that the age of the felsic intrusive magmatism (256.2 ± 3.0–259.8 ± 1.6 Ma) is indistinguishable from that of the mafic intrusive magmatism (255.4 ± 3.1–259.5 ± 2.7 Ma) and represents the final phase of a continuous magmatic episode that lasted no more than 10 Myr. The upper gabbros in the mafic–ultramafic intrusions are generally more isotopically enriched (lower eNd and eHf) than the middle and lower gabbros, suggesting that the upper gabbros have experienced a higher level of crustal contamination than the lower gabbros. The significantly positive eHf(t) values of the A-type granites and syenites (+4.9 to +10.8) are higher than those of the upper gabbros of the associated mafic intrusion, which shows that they cannot be derived by fractional crystallization of these bodies. They are however identical to those of the mafic enclaves (+7.0 to +11.4) and middle and lower gabbros, implying that they are cogenetic. We suggest that they were generated by fractionation of large-volume, plume-related basaltic magmas that ponded deep in the crust. The deep-seated magma chamber erupted in two stages: the first near a density minimum in the basaltic fractionation trend and the second during the final stage of fractionation when the magma was a low density Fe-poor, Si-rich felsic magma. The basaltic magmas emplaced in the shallowlevel magma chambers differentiated to form mafic–ultramafic layered intrusions accompanied by a small amount of crustal assimilation through roof melting. Evolved A-type granites (synenites and syenodiorites) were produced dominantly by crystallization in the deep crustal magma chamber. In contrast, the I-type granites have negative eNd(t) [-6.3 to -7.5] and eHf(t) [-1.3 to -6.7] values, with the Nd model ages (T Nd DM2) of 1.63-1.67 Ga and Hf model ages (T Hf DM2) of 1.56-1.58 Ga, suggesting that they were mainly derived from partial melting of Mesoproterozoic crust. In combination with previous studies, this study also shows that plume activity not only gave rise to reworking of ancient crust, but also significant growth of juvenile crust in the center of the ELIP.

Impact and interest:

48 citations in Scopus
46 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 66030
Item Type: Journal Article
Refereed: Yes
Keywords: LIP, U-Pb geochronology, Emeishan, layered intrusion
DOI: 10.1016/j.gca.2010.12.016
ISSN: 0016-7037
Subjects: Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > GEOCHEMISTRY (040200) > Isotope Geochemistry (040203)
Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > GEOLOGY (040300) > Geochronology (040303)
Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > GEOLOGY (040300) > Igneous and Metamorphic Petrology (040304)
Divisions: Current > Schools > School of Earth, Environmental & Biological Sciences
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 14 Jan 2014 22:54
Last Modified: 02 Apr 2014 00:44

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page