Autonomous movement-driven place recognition calibration for generic multi-sensor robot platforms

Jacobson, Adam, Chen, Zetao, & Milford, Michael (2013) Autonomous movement-driven place recognition calibration for generic multi-sensor robot platforms. In Sugano, S. & Kaneko, M. (Eds.) Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo Big Sight, Tokyo, 1314 -1320.

View at publisher


In this paper we present a method for autonomously tuning the threshold between learning and recognizing a place in the world, based on both how the rodent brain is thought to process and calibrate multisensory data and the pivoting movement behaviour that rodents perform in doing so. The approach makes no assumptions about the number and type of sensors, the robot platform, or the environment, relying only on the ability of a robot to perform two revolutions on the spot. In addition, it self-assesses the quality of the tuning process in order to identify situations in which tuning may have failed. We demonstrate the autonomous movement-driven threshold tuning on a Pioneer 3DX robot in eight locations spread over an office environment and a building car park, and then evaluate the mapping capability of the system on journeys through these environments. The system is able to pick a place recognition threshold that enables successful environment mapping in six of the eight locations while also autonomously flagging the tuning failure in the remaining two locations. We discuss how the method, in combination with parallel work on autonomous weighting of individual sensors, moves the parameter dependent RatSLAM system significantly closer to sensor, platform and environment agnostic operation.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 66359
Item Type: Conference Paper
Refereed: Yes
DOI: 10.1109/IROS.2013.6696519
ISSN: 2153-0858
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2013 IEEE
Copyright Statement: Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Deposited On: 21 Jan 2014 00:49
Last Modified: 09 Sep 2016 05:20

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page