Higher-order non-linear analysis of steel structures. Part I : elastic second-order formulation

Iu, C.K. & Bradford, M.A. (2012) Higher-order non-linear analysis of steel structures. Part I : elastic second-order formulation. Advanced Steel Construction, 8(2), pp. 168-182.

View at publisher

Abstract

This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.

Impact and interest:

5 citations in Scopus
Search Google Scholar™
4 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

320 since deposited on 09 Feb 2014
108 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 67074
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: beam-column, frames, geometric nonlinearity, material nonlinearity, higher-order element
ISSN: 1816-112X
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > NUMERICAL AND COMPUTATIONAL MATHEMATICS (010300) > Numerical Analysis (010301)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Structural Engineering (090506)
Australian and New Zealand Standard Research Classification > BUILT ENVIRONMENT AND DESIGN (120000) > ENGINEERING DESIGN (120400) > Engineering Design Methods (120403)
Divisions: Current > Schools > School of Civil Engineering & Built Environment
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2012 The Hong Kong Institute of Steel Construction
Deposited On: 09 Feb 2014 23:41
Last Modified: 16 Apr 2014 09:14

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page