A multiscale road map of cancer spheroids : incorporating experimental and mathematical modelling to understand cancer progression

Loessner, Daniela, Little, J. Paige, Pettet, Graeme J., & Hutmacher, Dietmar W. (2013) A multiscale road map of cancer spheroids : incorporating experimental and mathematical modelling to understand cancer progression. Journal of Cell Science, 126(13), pp. 2761-2771.

View at publisher


Computational models represent a highly suitable framework, not only for testing biological hypotheses and generating new ones but also for optimising experimental strategies. As one surveys the literature devoted to cancer modelling, it is obvious that immense progress has been made in applying simulation techniques to the study of cancer biology, although the full impact has yet to be realised. For example, there are excellent models to describe cancer incidence rates or factors for early disease detection, but these predictions are unable to explain the functional and molecular changes that are associated with tumour progression. In addition, it is crucial that interactions between mechanical effects, and intracellular and intercellular signalling are incorporated in order to understand cancer growth, its interaction with the extracellular microenvironment and invasion of secondary sites. There is a compelling need to tailor new, physiologically relevant in silico models that are specialised for particular types of cancer, such as ovarian cancer owing to its unique route of metastasis, which are capable of investigating anti-cancer therapies, and generating both qualitative and quantitative predictions. This Commentary will focus on how computational simulation approaches can advance our understanding of ovarian cancer progression and treatment, in particular, with the help of multicellular cancer spheroids, and thus, can inform biological hypothesis and experimental design.

Impact and interest:

10 citations in Scopus
10 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

33 since deposited on 09 Mar 2014
5 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 68149
Item Type: Journal Article
Refereed: Yes
Keywords: Mathematical predictions , Ovarian cancer , Spheroids , 3D experiments
DOI: 10.1242/jcs.123836
ISSN: 1477-9137
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2013 Company of Biologists Ltd
Deposited On: 09 Mar 2014 23:59
Last Modified: 19 Jul 2017 14:44

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page