Atomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites

Wang, Mingchao, Lai, Zheng Bo, Galpaya, Dilini, Yan, Cheng, Hu, Ning, & Zhou, Limin (2014) Atomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites. Journal of Applied Physics, 115(12), p. 123520.

View at publisher


Graphene has been increasingly used as nano sized fillers to create a broad range of nanocomposites with exceptional properties. The interfaces between fillers and matrix play a critical role in dictating the overall performance of a composite. However, the load transfer mechanism along graphene-polymer interface has not been well understood. In this study, we conducted molecular dynamics simulations to investigate the influence of surface functionalization and layer length on the interfacial load transfer in graphene polymer nanocomposites. The simulation results show that oxygen-functionalized graphene leads to larger interfacial shear force than hydrogen-functionalized and pristine ones during pull-out process. The increase of oxygen coverage and layer length enhances interfacial shear force. Further increase of oxygen coverage to about 7% leads to a saturated interfacial shear force. A model was also established to demonstrate that the mechanism of interfacial load transfer consists of two contributing parts, including the formation of new surface and relative sliding along the interface. These results are believed to be useful in development of new graphene-based nanocomposites with better interfacial properties.

Impact and interest:

11 citations in Scopus
Search Google Scholar™
9 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

78 since deposited on 25 Mar 2014
30 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 69118
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: Graphene, Nanocomposite, Functionalization, Pull-out test, Load transfer
DOI: 10.1063/1.4870170
ISSN: 0021-8979
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200) > Composite and Hybrid Materials (091202)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 AIP Publishing LLC
Deposited On: 25 Mar 2014 01:34
Last Modified: 27 Jan 2016 09:45

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page