Are in vitro estimates of cell diffusivity and cell proliferation rate sensitive to assay geometry?

Treloar, Katrina, Simpson, Matthew, McElwain, Sean, & Baker, Ruth (2014) Are in vitro estimates of cell diffusivity and cell proliferation rate sensitive to assay geometry? Journal of Theoretical Biology, 356, pp. 71-84.

View at publisher (open access)

Abstract

Cells respond to various biochemical and physical cues during wound–healing and tumour progression. In vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour–like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound–like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time–evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.

Impact and interest:

11 citations in Scopus
Search Google Scholar™
10 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

50 since deposited on 22 Apr 2014
10 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 70360
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: Cell diffusivity, Cell proliferation rate, Circular barrier assay, Cancer, Wound healing
DOI: 10.1016/j.jtbi.2014.04.026
ISSN: 0022-5193
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > APPLIED MATHEMATICS (010200) > Biological Mathematics (010202)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Mathematical Sciences
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 The Authors
Copyright Statement: NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Theoretical Biology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Theoretical Biology, [Volume 356, (7 September 2014)] DOI: 10.1016/j.jtbi.2014.04.026
Deposited On: 22 Apr 2014 05:52
Last Modified: 15 Oct 2015 15:14

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page