N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB

Van Damme, P., Lasa, M., Polevoda, B., Gazquez, C., Elosegui-Artola, A., Kim, D.S., de Juan Pardo, E.M., Demeyer, K., Hole, K., Larrea, E., Timmerman, E., Prieto, J., Arnesen, T., Sherman, F., Gevaert, K., & Aldabe, R. (2012) N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proceedings of the National Academy of Sciences, 109(31), pp. 12449-12454.

View at publisher

Abstract

Protein N-terminal acetylation (Nt-acetylation) is an important mediator of protein function, stability, sorting, and localization. Although the responsible enzymes are thought to be fairly well characterized, the lack of identified in vivo substrates, the occurrence of Nt-acetylation substrates displaying yet uncharacterized N-terminal acetyltransferase (NAT) specificities, and emerging evidence of posttranslational Nt-acetylation, necessitate the use of genetic models and quantitative proteomics. NatB, which targets Met-Glu-, Met-Asp-, and Met-Asn-starting protein N termini, is presumed to Nt-acetylate 15% of all yeast and 18% of all human proteins. We here report on the evolutionary traits of NatB from yeast to human and demonstrate that ectopically expressed hNatB in a yNatB-Δ yeast strain partially complements the natB-Δ phenotypes and partially restores the yNatB Nt-acetylome. Overall, combining quantitative N-terminomics with yeast studies and knockdown of hNatB in human cell lines, led to the unambiguous identification of 180 human and 110 yeast NatB substrates. Interestingly, these substrates included Met-Gln- N-termini, which are thus now classified as in vivo NatB substrates. We also demonstrate the requirement of hNatB activity for maintaining the structure and function of actomyosin fibers and for proper cellular migration. In addition, expression of tropomyosin-1 restored the altered focal adhesions and cellular migration defects observed in hNatB-depleted HeLa cells, indicative for the conserved link between NatB, tropomyosin, and actin cable function from yeast to human.

Impact and interest:

39 citations in Scopus
Search Google Scholar™
35 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 70752
Item Type: Journal Article
Refereed: Yes
DOI: 10.1073/pnas.1210303109
ISSN: 1091-6490
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 30 Apr 2014 22:42
Last Modified: 01 May 2014 23:47

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page