Second-order elastic finite element analysis of structures using a single element per member

Iu, C.K. & Bradford, M.A. (2009) Second-order elastic finite element analysis of structures using a single element per member. In Chan, S.L. (Ed.) Proceedings of Progress in Structural Stability and Dynamics, IJSSD Symposium, Hong Kong, pp. 149-156.

Abstract

Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load-displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included.

Impact and interest:

7 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

83 since deposited on 05 May 2014
13 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 70949
Item Type: Conference Paper
Refereed: Yes
Keywords: finite element, bowing, frame analysis, geometric nonlinearities, one element per member
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Structural Engineering (090506)
Divisions: Current > Schools > School of Civil Engineering & Built Environment
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2009 [please consult the author]
Deposited On: 05 May 2014 01:18
Last Modified: 12 Jun 2014 05:30

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page