Multiphasic construct studied in an ectopic osteochondral defect model

Jeon, June E., Vaquette, Cedryck, Theodoropoulos, Christina, Klein, Travis J., & Hutmacher, Dietmar W. (2014) Multiphasic construct studied in an ectopic osteochondral defect model. Journal of Royal Society Interface, 11(95).

View at publisher


In vivo osteochondral defect models predominantly consist of small animals, such as rabbits. Although they have an advantage of low cost and manageability, their joints are smaller and more easily healed compared with larger animals or humans. We hypothesized that osteochondral cores from large animals can be implanted subcutaneously in rats to create an ectopic osteochondral defect model for routine and high-throughput screening of multiphasic scaffold designs and/or tissue-engineered constructs (TECs). Bovine osteochondral plugs with 4 mm diameter osteochondral defect were fitted with novel multiphasic osteochondral grafts composed of chondrocyte-seeded alginate gels and osteoblast-seeded polycaprolactone scaffolds, prior to being implanted in rats subcutaneously with bone morphogenic protein-7. After 12 weeks of in vivo implantation, histological and micro-computed tomography analyses demonstrated that TECs are susceptible to mineralization. Additionally, there was limited bone formation in the scaffold. These results suggest that the current model requires optimization to facilitate robust bone regeneration and vascular infiltration into the defect site. Taken together, this study provides a proof-of-concept for a high-throughput osteochondral defect model. With further optimization, the presented hybrid in vivo model may address the growing need for a cost-effective way to screen osteochondral repair strategies before moving to large animal preclinical trials.

Impact and interest:

6 citations in Scopus
Search Google Scholar™
6 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 71092
Item Type: Journal Article
Refereed: Yes
Keywords: Multiphasic scaffold, Biomaterials, Osteochondral repair, Tissue Engineering, In vivo model
DOI: 10.1098/rsif.2014.0184
ISSN: 1742-5662
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomaterials (090301)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2014 Royal Society Publishing
Deposited On: 07 May 2014 23:41
Last Modified: 24 Aug 2016 01:31

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page