Commissioning of a new commercial plastic scintillator system for radiotherapy

Morales, J., Hill, R., Crowe, S., & Trapp, J. (2014) Commissioning of a new commercial plastic scintillator system for radiotherapy. Australasian Physical and Engineering Sciences in Medicine, 37(1), p. 177.

View at publisher



Since 1992 there have been several articles published on research on plastic scintillators for use in radiotherapy. Plastic scintillators are said to be tissue equivalent, temperature independent and dose rate independent [1]. Although their properties were found to be promising for measurements in megavoltage X-ray beams there were some technical difficulties with regards to its commercialisation. Standard Imaging has produced the first commercial system which is now available for use in a clinical setting. The Exradin W1 scintillator device uses a dual fibre system where one fibre is connected to the Plastic Scintillator and the other fibre only measures Cerenkov radiation [2]. This paper presents results obtained during commissioning of this dosimeter system.


All tests were performed on a Novalis Tx linear accelerator equipped with a 6 MV SRS photon beam and conventional 6 and 18 MV X-ray beams. The following measurements were performed in a Virtual Water phantom at a depth of dose maximum. Linearity: The dose delivered was varied between 0.2 and 3.0 Gy for the same field conditions. Dose rate dependence: For this test the repetition rate of the linac was varied between 100 and 1,000 MU/min. A nominal dose of 1.0 Gy was delivered for each rate. Reproducibility: A total of five irradiations for the same setup.


The W1 detector gave a highly linear relationship between dose and the number of Monitor Units delivered for a 10 9 10 cm2 field size at a SSD of 100 cm. The linearity was within 1 % for the high dose end and about 2 % for the very low dose end. For the dose rate dependence, the dose measured as a function of repetition the rate (100–1,000 MU/min) gave a maximum deviation of 0.9 %. The reproducibility was found to be better than 0.5 %.

Discussion and conclusions

The results for this system look promising so far being a new dosimetry system available for clinical use. However, further investigation is needed to produce a full characterisation prior to use in megavoltage X-ray beams.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 71398
Item Type: Journal Article
Refereed: Yes
Additional URLs:
DOI: 10.1007/s13246-014-0248-y
ISSN: 0158-9938
Subjects: Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > OTHER PHYSICAL SCIENCES (029900) > Medical Physics (029903)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 12 May 2014 23:16
Last Modified: 06 Sep 2016 03:09

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page