Measuring and influencing physical activity with Smartphone technology : a systematic review

Bort-Roig, Judit, Gilson, Nicholas D., Puig-Ribera, Anna, Contreras, Ruth S., & Trost, Stewart G. (2014) Measuring and influencing physical activity with Smartphone technology : a systematic review. Sports Medicine, 44(5), pp. 671-686.

View at publisher

Abstract

Background

Rapid developments in technology have encouraged the use of smartphones in physical activity research, although little is known regarding their effectiveness as measurement and intervention tools.

Objective

This study systematically reviewed evidence on smartphones and their viability for measuring and influencing physical activity.

Data Sources

Research articles were identified in September 2013 by literature searches in Web of Knowledge, PubMed, PsycINFO, EBSCO, and ScienceDirect.

Study Selection

The search was restricted using the terms (physical activity OR exercise OR fitness) AND (smartphone* OR mobile phone* OR cell phone*) AND (measurement OR intervention). Reviewed articles were required to be published in international academic peer-reviewed journals, or in full text from international scientific conferences, and focused on measuring physical activity through smartphone processing data and influencing people to be more active through smartphone applications.

Study Appraisal and Synthesis Methods

Two reviewers independently performed the selection of articles and examined titles and abstracts to exclude those out of scope. Data on study characteristics, technologies used to objectively measure physical activity, strategies applied to influence activity; and the main study findings were extracted and reported.

Results

A total of 26 articles (with the first published in 2007) met inclusion criteria. All studies were conducted in highly economically advantaged countries; 12 articles focused on special populations (e.g. obese patients). Studies measured physical activity using native mobile features, and/or an external device linked to an application. Measurement accuracy ranged from 52 to 100 % (n = 10 studies). A total of 17 articles implemented and evaluated an intervention. Smartphone strategies to influence physical activity tended to be ad hoc, rather than theory-based approaches; physical activity profiles, goal setting, real-time feedback, social support networking, and online expert consultation were identified as the most useful strategies to encourage physical activity change. Only five studies assessed physical activity intervention effects; all used step counts as the outcome measure. Four studies (three pre–post and one comparative) reported physical activity increases (12–42 participants, 800–1,104 steps/day, 2 weeks–6 months), and one case-control study reported physical activity maintenance (n = 200 participants; >10,000 steps/day) over 3 months.

Limitations

Smartphone use is a relatively new field of study in physical activity research, and consequently the evidence base is emerging.

Conclusions

Few studies identified in this review considered the validity of phone-based assessment of physical activity. Those that did report on measurement properties found average-to-excellent levels of accuracy for different behaviors. The range of novel and engaging intervention strategies used by smartphones, and user perceptions on their usefulness and viability, highlights the potential such technology has for physical activity promotion. However, intervention effects reported in the extant literature are modest at best, and future studies need to utilize randomized controlled trial research designs, larger sample sizes, and longer study periods to better explore the physical activity measurement and intervention capabilities of smartphones.

Impact and interest:

44 citations in Scopus
Search Google Scholar™
44 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 71714
Item Type: Journal Article
Refereed: Yes
DOI: 10.1007/s40279-014-0142-5
ISSN: 1179-2035
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > PUBLIC HEALTH AND HEALTH SERVICES (111700) > Health Promotion (111712)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Exercise & Nutrition Sciences
Copyright Owner: Copyright 2014 Springer
Deposited On: 16 May 2014 01:46
Last Modified: 20 May 2014 03:35

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page