Effect of constraint on void growth near a blunt crack tip

Yan, Cheng & Mai, Yiu-Wing (1998) Effect of constraint on void growth near a blunt crack tip. International Journal of Fracture, 92(3), pp. 287-304.

View at publisher

Abstract

The growth of a single cylindrical hole ahead of a blunt crack tip was studied using large deformation finite element analysis in three-point bend specimens with different precrack depth. The effect of small second phase particles was taken into account by incorporating Gurson’s constitutive equation. The effects of strain hardening and the initial distance from the hole to the crack tip were also investigated. The results show that the variation of crack tip opening displacement with load is not sensitive to constraint level. The effects of constraint on the growth of hole and ductile initiation toughness are diminished with decreasing initial distance from the hole to the blunt crack tip.

Impact and interest:

13 citations in Scopus
Search Google Scholar™
13 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

46 since deposited on 19 May 2014
14 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 71784
Item Type: Journal Article
Refereed: Yes
Keywords: constraint, fracture, damage, finite element analysis, crack tip stress field
DOI: 10.1023/A:1007404319651
ISSN: 0376-9429
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200) > Metals and Alloy Materials (091207)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Solid Mechanics (091308)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 1998 Springer
Deposited On: 19 May 2014 22:27
Last Modified: 22 May 2014 02:42

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page