A light and electron microscopic study of NADPH-diaphorase-,calretinin- and parvalbumin-containing neurons in the rat nucleus accumbens

Hussain, Zubair, Johnson, Luke R., & Totterdell, Susan (1996) A light and electron microscopic study of NADPH-diaphorase-,calretinin- and parvalbumin-containing neurons in the rat nucleus accumbens. Journal of Chemical Neuroanatomy, 10(1), pp. 19-39.

View at publisher


The rat nucleus accumbens contains medium-sized, spiny projection neurons and intrinsic, local circuit neurons, or interneurons. Sub-classes of interneurons, revealed by calretinin (CR) or parvalbumin (PV) immunoreactivity or reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, were compared in the nucleus accumbens core, shell and rostral pole. CR, PV and NADPH-diaphorase-containing neurons are shown to form three non-co-localising populations in these three areas. No significant differences in neuronal population densities were found between the subterritories. NADPH-diaphorase-containing neurons could be further separated morphologically into three sub-groups, but CR- and PV-immunoreactive neurons form homogeneous populations. Ultrastructurally, NADPH-diaphorase-, CR- and PV-containing neurons in the nucleus accumbens all possess nuclear indentations. These are deeper and fewer in neurons immunoreactive for PV than in CR- and NADPH-diaphorase-containing neurons. CR-immunoreactive boutons form asymmetrical and symmetrical synaptic specialisations on spines, dendrites and somata, while PV-immunoreactive boutons make only symmetrical synaptic specialisations. Both CR- and PV-immunoreactive boutons form symmetrical synaptic specialisations with medium-sized spiny neurons and contact other CR- and PV-immunoreactive somata, respectively. A novel non-carcinogenic substrate for the peroxidase reaction (Vector Slate Grey, SG) was found to be characteristically electron-dense and may be distinguishable from the diaminobenzidine reaction product. We conclude that the three markers used in this study are localised in distinct populations of nucleus accumbens interneurons. Our studies of their synaptic connections contribute to an increased understanding of the intrinsic circuitry of this area.

Impact and interest:

38 citations in Scopus
38 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 71951
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: rat nucleus accumbens
DOI: 10.1016/0891-0618(95)00098-4
ISSN: 0891-0618
Subjects: Australian and New Zealand Standard Research Classification > PSYCHOLOGY AND COGNITIVE SCIENCES (170000) > PSYCHOLOGY (170100) > Biological Psychology (Neuropsychology Psychopharmacology Physiological Psychology) (170101)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Psychology & Counselling
Deposited On: 22 May 2014 23:10
Last Modified: 22 May 2014 23:10

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page