Effect of constraint on ductile crack growth and ductile-brittle fracture transition of a carbon steel

Yan, C. & Mai, Y. W. (1997) Effect of constraint on ductile crack growth and ductile-brittle fracture transition of a carbon steel. International Journal of Pressure Vessels and Piping, 73(3), pp. 167-173.

View at publisher

Abstract

Ductile-brittle fracture transition was investigated using compact tension (CT) specimens from -70oC to 40oC for a carbon steel. Large deformation finite element analysis has been carried out to simulate the stable crack growth in the compact tension (CT, a/W=0.6), three point-point bend (SE(B), a/W=0.1) and centre-cracked tension (M(T), a/W=0.5) specimens. Experimental crack tip opening displacement (CTOD) resistance curve was employed as the crack growth criterion. Ductile tearing is sensitive to constraint and tearing modulus increases with reduced constraint level. The finite element analysis shows that path-dependence of J-integral occurs from the very beginning of crack growth and ductile crack growth elevates the opening stress on the remaining ligament. Cleavage may occur after some ductile crack growth due to the increase of opening stress. For both stationary and growing cracks, the magnitude of opening stress increases with increasing in-plane constraint. The ductile-brittle transition takes place when the opening stress ahead of the crack tip reaches the local cleavage stress as the in-plane constraint of the specimen increases.

Impact and interest:

12 citations in Scopus
Search Google Scholar™
8 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

123 since deposited on 25 May 2014
15 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 72095
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: fracture mechanics, size effects, geometry constraint
DOI: 10.1016/S0308-0161(97)00057-4
ISSN: 1879-3541
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200) > Metals and Alloy Materials (091207)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Solid Mechanics (091308)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 1997 Elsvier Ltd.
Copyright Statement: NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Pressure Vessels and Piping. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Pressure Vessels and Piping, [73, 3, (October 1997)] http://dx.doi.org.ezp01.library.qut.edu.au/10.1016/S0308-0161(97)00057-4
Deposited On: 25 May 2014 23:29
Last Modified: 30 May 2014 06:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page