Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines

Thompson, Erik W., Paik, S., Brünner, N., Sommers, C. L., Zugmaier, G., Clarke, R., Shima, T. B., Torri, J., Donahue, S., Lippman, M. E., Martin, G. R., & Dickson, R. B. (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. Journal of Cellular Physiology, 150(3), pp. 534-544.

View at publisher


Lack of estrogen receptor (ER) and presence of vimentin (VIM) associate with poor prognosis in human breast cancer. We have explored the relationships between ER, VIM, and invasiveness in human breast cancer cell lines. In the matrigel outgrowth assay, ER+/VIM- (MCF-7, T47D, ZR-75-1), and ER-/VIM- (MDA-MB-468, SK-Br-3) cell lines were uninvasive, while ER-/VIM+ (BT549, MDA-MB-231, MDA-MB-435, MDA-MB-436, Hs578T) lines formed invasive, penetrating colonies. Similarly, ER-/VIM+ cell lines were significantly more invasive than either the ER+/VIM- or ER-/VIM- cell lines in the Boyden chamber chemoinvasion assay. Invasive activity in nude mice was only seen with ER-/ VIM+ cell lines MDA-MB-231, MDA-MB-435 and MDA-MB-436. Hs578T cells (ER-/VIM+) showed hematogenous dissemination to the lungs in one of five mice, but lacked local invasion. The ER-/VIM+ MCF-7ADR subline was significantly more active than the MCF-7 cells in vitro, but resembled the wild-type MCF-7 parent in in vivo activity. Data from these cell lines suggest that human breast cancer progression results first in the loss of ER, and subsequently in VIM acquisition, the latter being associated with increased metastatic potential through enhanced invasiveness. The MCF-7ADR data provide evidence that this transition can occur in human breast cancer cells. Vimentin expression may provide useful insights into mechanisms of invasion and/or breast cancer cell progression.

Impact and interest:

424 citations in Scopus
Search Google Scholar™
442 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 72297
Item Type: Journal Article
Refereed: Yes
DOI: 10.1002/jcp.1041500314
ISSN: 00219541
Divisions: Current > Schools > School of Biomedical Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Deposited On: 03 Jun 2014 00:41
Last Modified: 03 Jun 2014 01:41

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page