Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers

Dey, Priyanka, Zhu, Shaoli, Thurecht, Kristofer, Fredericks, Peter, & Blakey, Idriss (2014) Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers. Journal of Materials Chemistry B : Materials for Biology and Medicine, 2, pp. 2827-2837.

View at publisher

Abstract

The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.

Impact and interest:

19 citations in Scopus
Search Google Scholar™
17 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

21 since deposited on 26 Aug 2014
10 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 72757
Item Type: Journal Article
Refereed: Yes
Keywords: nanoparticles, nano-assemblies, Raman spectroscopy, SERS, surface plasmon resonance
DOI: 10.1039/c4tb00263f
ISSN: 2050-750X
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > MACROMOLECULAR AND MATERIALS CHEMISTRY (030300) > Nanochemistry and Supramolecular Chemistry (030302)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > MACROMOLECULAR AND MATERIALS CHEMISTRY (030300) > Synthesis of Materials (030306)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > OTHER MEDICAL AND HEALTH SCIENCES (119900) > Medical and Health Sciences not elsewhere classified (119999)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute for Future Environments
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Funding:
Copyright Owner: Copyright 2014 Royal Society of Chemistry Publications
Deposited On: 26 Aug 2014 23:43
Last Modified: 13 Apr 2015 07:53

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page