6 versus 12 month performance of polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model

Yong, Mostyn R., Savi, Flavia M., Woodruff, Maria A., Saifzadeh, Siamak, Askin, Geoffrey N., Labrom, Robert D., Hutmacher, Dietmar W., & Adam, Clayton J. (2014) 6 versus 12 month performance of polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model. In 25th Annual Scientific Meeting of the Spine Society of Australia, 10-12 April 2014, Brisbane Convention and Exhibition Centre, Brisbane, QLD.

Abstract

Introduction

Well-designed biodegradable scaffolds in combination with bone growth factors offer a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a large preclinical animal model.

Methods

Twelve sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion assessments were performed via high resolution clinical computed tomography and histological evaluation were undertaken at six (n=6) and twelve (n=6) months post-surgery using the Sucato grading system (Sucato et al. 2004).

Results

The computed tomography fusion grades of the 6- and 12- months in the rhBMP-2 plus PCL- based scaffold group were 1.9 and 2.1 respectively, in the autograft group 1.9 and 1.3 respectively, and in the scaffold alone group 0.9 and 1.17 respectively. There were no statistically significant differences in the fusion scores between 6- and 12- month for the rhBMP plus PCL- based scaffold or PCL – based scaffold alone group however there was a significant reduction in scores in the autograft group. These scores were seen to correlate with histological evaluations of the respective groups.

Conclusions

The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post-surgery.

Impact and interest:

5 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

192 since deposited on 22 Jul 2014
172 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 73060
Item Type: Conference Item (Presentation)
Refereed: Yes
Additional URLs:
Keywords: biodegradable scaffold, spinal fusion, polycaprolactone scaffold, ovine spine model, intervertebral fusion, human bone morphogenetic protein -2, BMP-2, biomechanical testing, computed tomography
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomechanical Engineering (090302)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Medical Devices (090304)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > CLINICAL SCIENCES (110300) > Orthopaedics (110314)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 Author(s)
Deposited On: 22 Jul 2014 22:13
Last Modified: 21 Jun 2017 18:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page