PRMT2 and RORγ expression are associated with breast cancer survival outcomes

Oh, Tae Gyu, Bailey, Peter, Dray, Eloise, Smith, Aaron G., Goode, Joel, Eriksson, Natalie, Funder, John W., Fuller, Peter J., Simpson, Evan R., Tilley, Wayne D., Leedman, Peter J., Clarke, Christine L., Grimmond, Sean, Dowhan, Dennis H., & Muscat, George E. O. (2014) PRMT2 and RORγ expression are associated with breast cancer survival outcomes. Molecular Endocrinology, 28(7), pp. 1166-1185.

View at publisher

Abstract

Protein arginine methyltransferases (PRMTs) methylate arginine residues on histones and target transcription factors that play critical roles in many cellular processes, including gene transcription, mRNA splicing, proliferation, and differentiation. Recent studies have linked PRMT-dependent epigenetic marks and modifications to carcinogenesis and metastasis in cancer. However, the role of PRMT2-dependent signaling in breast cancer remains obscure. We demonstrate PRMT2 mRNA expression was significantly decreased in breast cancer relative to normal breast. Gene expression profiling, Ingenuity and protein-protein interaction network analysis after PRMT2-short interfering RNA transfection into MCF-7 cells, revealed that PRMT2-dependent gene expression is involved in cell-cycle regulation and checkpoint control, chromosomal instability, DNA repair, and carcinogenesis. For example, PRMT2 depletion achieved the following: 1) increased p21 and decreased cyclinD1 expression in (several) breast cancer cell lines, 2) decreased cell migration, 3) induced an increase in nucleotide excision repair and homologous recombination DNA repair, and 4) increased the probability of distance metastasis free survival (DMFS). The expression of PRMT2 and retinoid-related orphan receptor-γ (RORγ) is inversely correlated in estrogen receptor-positive breast cancer and increased RORγ expression increases DMFS. Furthermore, we found decreased expression of the PRMT2-dependent signature is significantly associated with increased probability of DMFS. Finally, weighted gene coexpression network analysis demonstrated a significant correlation between PRMT2-dependent genes and cell-cycle checkpoint, kinetochore, and DNA repair circuits. Strikingly, these PRMT2-dependent circuits are correlated with pan-cancer metagene signatures associated with epithelial-mesenchymal transition and chromosomal instability. This study demonstrates the role and significant correlation between a histone methyltransferase (PRMT2)-dependent signature, RORγ, the cell-cycle regulation, DNA repair circuits, and breast cancer survival outcomes.

Impact and interest:

6 citations in Scopus
Search Google Scholar™
5 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 73274
Item Type: Journal Article
Refereed: Yes
Additional URLs:
DOI: 10.1210/me.2013-1403
ISSN: 1944-9917
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > MEDICAL BIOCHEMISTRY AND METABOLOMICS (110100)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > MEDICAL MICROBIOLOGY (110800)
Divisions: Current > Schools > School of Biomedical Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Deposited On: 02 Jul 2014 23:40
Last Modified: 03 Jul 2014 23:28

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page