Low-pressure planar magnetron discharge for surface deposition and nanofabrication

Baranov, Oleg, Romanov, Maxim, Wolter, Matthias, Kumar, Shailesh, Zhong, Xiaoxia, & Ostrikov, Kostya (2010) Low-pressure planar magnetron discharge for surface deposition and nanofabrication. Physics of Plasmas, 17(5), 053509-1.

View at publisher

Abstract

Current-voltage characteristics of the planar magnetron are studied experimentally and by numerical simulation. Based on the measured current-voltage characteristics, a model of the planar magnetron discharge is developed with the background gas pressure and magnetic field used as parameters. The discharge pressure was varied in a range of 0.7-1.7 Pa, the magnetic field of the magnetron was of 0.033-0.12 T near the cathode surface, the discharge current was from 1 to 25 A, and the magnetic field lines were tangential to the substrate surface in the region of the magnetron discharge ignition. The discharge model describes the motion of energetic secondary electrons that gain energy by passing the cathode sheath across the magnetic field, and the power required to sustain the plasma generation in the bulk. The plasma electrons, in turn, are accelerated in the electric field and ionize effectively the background gas species. The model is based on the assumption about the prevailing Bohm mechanism of electron conductivity across the magnetic field. A criterion of the self-sustained discharge ignition is used to establish the dependence of the discharge voltage on the discharge current. The dependence of the background gas density on the current is also observed from the experiment. The model is consistent with the experimental results. © 2010 American Institute of Physics.

Impact and interest:

3 citations in Scopus
3 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

99 since deposited on 11 Jul 2014
34 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 73779
Item Type: Journal Article
Refereed: Yes
Additional URLs:
DOI: 10.1063/1.3431098
ISSN: 1070-664X
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2010 American Institute of Physics
Deposited On: 11 Jul 2014 03:53
Last Modified: 21 Jun 2017 23:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page