Effect of input power and gas pressure on the roughening and selective etching of SiO2/Si surfaces in reactive plasmas

Zhong, X.X., Tam, E., Huang, X.Z., Colpo, P., Rossi, F., & Ostrikov, K. (2010) Effect of input power and gas pressure on the roughening and selective etching of SiO2/Si surfaces in reactive plasmas. Physics of Plasmas, 17(9), 094501-1.

View at publisher

Abstract

We report on the application low-temperature plasmas for roughening Si surfaces which is becoming increasingly important for a number of applications ranging from Si quantum dots to cell and protein attachment for devices such as "laboratory on a chip" and sensors. It is a requirement that Si surface roughening is scalable and is a single-step process. It is shown that the removal of naturally forming SiO2 can be used to assist in the roughening of the surface using a low-temperature plasma-based etching approach, similar to the commonly used in semiconductor micromanufacturing. It is demonstrated that the selectivity of SiO2 /Si etching can be easily controlled by tuning the plasma power, working gas pressure, and other discharge parameters. The achieved selectivity ranges from 0.4 to 25.2 thus providing an effective means for the control of surface roughness of Si during the oxide layer removal, which is required for many advance applications in bio- and nanotechnology.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
2 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

30 since deposited on 11 Jul 2014
14 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 73800
Item Type: Journal Article
Refereed: Yes
Additional URLs:
DOI: 10.1063/1.3482212
ISSN: 1070-664X
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2010 American Institute of Physics
Deposited On: 11 Jul 2014 01:13
Last Modified: 13 Jul 2014 23:10

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page