Performance and gaseous and particle emissions from a liquefied petroleum gas (LPG) fumigated compression ignition engine

Surawski, Nicholas C., Miljevic, Branka, Bodisco, Timothy A., Situ, Rong, Brown, Richard J., & Ristovski, Zoran D. (2014) Performance and gaseous and particle emissions from a liquefied petroleum gas (LPG) fumigated compression ignition engine. Fuel, 133, pp. 17-25.

View at publisher

Abstract

In this study, an LPG fumigation system was fitted to a Euro III compression ignition (CI) engine to explore its impact on performance, and gaseous and particulate emissions. LPG was introduced to the intake air stream (as a secondary fuel) by using a low pressure fuel injector situated upstream of the turbocharger. LPG substitutions were test mode dependent, but varied in the range of 14-29% by energy. The engine was tested over a 5 point test cycle using ultra low sulphur diesel (ULSD), and a low and high LPG substitution at each test mode. The results show that LPG fumigation coerces the combustion into pre-mixed mode, as increases in the peak combustion pressure (and the rate of pressure rise) were observed in most tests. The emissions results show decreases in nitric oxide (NO) and particulate matter (PM2.5) emissions; however, very significant increases in carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. A more detailed investigation of the particulate emissions showed that the number of particles emitted was reduced with LPG fumigation at all test settings – apart from mode 6 of the ECE R49 test cycle. Furthermore, the particles emitted generally had a slightly larger median diameter with LPG fumigation, and had a smaller semi-volatile fraction relative to ULSD. Overall, the results show that with some modifications, LPG fumigation systems could be used to extend ULSD supplies without adversely impacting on engine performance and emissions.

Impact and interest:

7 citations in Scopus
Search Google Scholar™
6 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

6 since deposited on 13 Jul 2014
4 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 73851
Item Type: Journal Article
Refereed: Yes
Keywords: liquefied petroleum gas, gaseous emissions, fumigation, engine performance, particulate emissions
DOI: 10.1016/j.fuel.2014.04.093
ISSN: 0016-2361
Subjects: Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > ATMOSPHERIC SCIENCES (040100) > Atmospheric Aerosols (040101)
Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > ENVIRONMENTAL SCIENCE AND MANAGEMENT (050200) > Environmental Monitoring (050206)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ENVIRONMENTAL ENGINEERING (090700) > Environmental Engineering not elsewhere classified (090799)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 Elsevier Ltd.
Copyright Statement: NOTICE: this is the author’s version of a work that was accepted for publication in Fuel. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Fuel, [Volume 133, (1 October 2014)] DOI: 10.1016/j.fuel.2014.04.093
Deposited On: 13 Jul 2014 22:32
Last Modified: 08 Nov 2016 14:15

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page