Graphitization of nanocrystalline carbon microcoils synthesized by catalytic chemical vapor deposition

Bi, H., Kou, K.C., Ostrikov, K., & Zhang, J.Q. (2008) Graphitization of nanocrystalline carbon microcoils synthesized by catalytic chemical vapor deposition. Journal of Applied Physics, 104(3), 033510-1.

View at publisher


Graphitization, a common process involving the transformation of metastable nongraphitic carbon into graphite is one of the major present-day challenges for micro- and nanocarbons due to their unique structural character and highly unusual thermal activation. Here we report on the successful graphitization of nanocrystalline carbon microcoils prepared by catalytic chemical vapor deposition and post-treated in argon atmosphere at temperatures ∼2500 °C for 2 h. The morphology, microstructure, and thermal properties of the carbon microcoils are examined in detail. The graphitization mechanism is discussed by invoking a model of structural transformation of the carbon microcoils. The results reveal that after graphitization the carbon microcoils are prominently purified and feature a clear helical morphology, as well as a more regular and ordered microstructure. The interlayer spacing of the carbon microcoils decreases from 0.36 to 0.34 nm, whereas the mean crystal sizes in the c - and a -directions increase from 1.64 to 2.04 nm and from 3.86 to 7.21 nm, respectively. Thermal treatment also substantially improves the antioxidation properties of the microcoils by lifting the oxidation onset temperature from 550 to 672 °C. This process may be suitable for other nongraphitic micro- and nanomaterials.

Impact and interest:

12 citations in Scopus
10 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

112 since deposited on 17 Jul 2014
40 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 73865
Item Type: Journal Article
Refereed: Yes
Additional URLs:
DOI: 10.1063/1.2963712
ISSN: 0021-8979
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Deposited On: 17 Jul 2014 00:09
Last Modified: 17 Jul 2014 22:45

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page