Customizing electron confinement in plasma-assembled Si/AlN nanodots for solar cell applications

Huang, S.Y., Arulsamy, A. Das, Xu, M., Xu, S., Cvelbar, U., Mozetic, M., & Ostrikov, K. (2009) Customizing electron confinement in plasma-assembled Si/AlN nanodots for solar cell applications. Physics of Plasmas, 16(12), pp. 123504-1.

View at publisher


Size-uniform Si nanodots (NDs) are synthesized on an AlN buffer layer at low Si(111) substrate temperatures using inductively coupled plasma-assisted magnetron sputtering deposition. High-resolution electron microscopy reveals that the sizes of the Si NDs range from 9 to 30 nm. Room-temperature photoluminescence (PL) spectra indicate that the energy peak shifts from 738 to 778 nm with increasing the ND size. In this system, the quantum confinement effect is fairly strong even for relatively large (up to 25 nm in diameter) NDs, which is promising for the development of the next-generation all-Si tandem solar cells capable of effectively capturing sunlight photons with the energies between 1.7 (infrared: large NDs) and 3.4 eV (ultraviolet: small NDs). The strength of the resulting electron confinement in the Si/AlN ND system is evaluated and justified by analyzing the measured PL spectra using the ionization energy theory approximation.

Impact and interest:

6 citations in Scopus
Search Google Scholar™
7 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

93 since deposited on 15 Jul 2014
67 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 73898
Item Type: Journal Article
Refereed: Yes
Additional URLs:
DOI: 10.1063/1.3274467
ISSN: 1070-664X
Divisions: Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2009 American Institute of Physics
Deposited On: 15 Jul 2014 00:01
Last Modified: 16 Jul 2014 01:44

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page