Effect of soil properties on the response of pile to underground explosion

Jayasinghe, Laddu Bhagya, Thambiratnam, David, Perera, Nimal, & Jayasooriya, Ruwan (2014) Effect of soil properties on the response of pile to underground explosion. Structural Engineering International, 24(3), pp. 361-370.

View at publisher

Abstract

This paper develops and presents a fully coupled non-linear finite element procedure to treat the response of piles to ground shocks induced by underground explosions. The Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations are used in the study. Pile responses in four different soil types, viz, saturated soil, partially saturated soil and loose and dense dry soils are investigated and the results compared. Numerical results are validated by comparing with those from a standard design manual. Blast wave propagation in soils, horizontal pile deformations and damages in the pile are presented. The pile damage presented through plastic strain diagrams will enable the vulnerability assessment of the piles under the blast scenarios considered. The numerical results indicate that the blast performance of the piles embedded in saturated soil and loose dry soil are more severe than those in piles embedded in partially saturated soil and dense dry soil. Present findings should serve as a benchmark reference for future analysis and design.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

114 since deposited on 20 Jul 2014
52 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 74146
Item Type: Journal Article
Refereed: Yes
Additional URLs:
DOI: 10.2749/101686614X13854694314522
ISSN: 1683-0350
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Structural Engineering (090506)
Divisions: Current > Schools > School of Civil Engineering & Built Environment
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 International Association for Bridge and Structural Engineering
Deposited On: 20 Jul 2014 23:03
Last Modified: 16 Sep 2014 01:40

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page