QUT ePrints

TEM, XRD and thermal stability of adsorbed paranitrophenol on DDOAB organoclay

Frost, Ray L., Zhou, Qin, He, Hongping, Xi, Yunfei, & Zbik, Marek (2007) TEM, XRD and thermal stability of adsorbed paranitrophenol on DDOAB organoclay. Journal of Colloid and Interface Science, 311(1), pp. 24-37.

View at publisher

Abstract

Water purification is of extreme importance to modern society. Organoclays through adsorption of recalcitrant organics provides one mechanism for the removal of these molecules. The organoclay was synthesised through ion exchange with dimethyldioctadecylammonium bromide labeled as DDOAB of formula (CH3(CH2)17)2NBr(CH3)2. Paranitrophenol was adsorbed on the organoclay at a range of concentrations according to the cation exchange capacity (CEC) of the host montmorillonite. The paranitrophenol in solution was analysed by a UV-260 spectrophotometer at 317nm, with detection limits being 0.05mg/L. The expansion of the montmorillonite was studied by a combination of X-ray diffraction and transmission electron microscopy. Upon adsorption of the paranitrophenol the basal spacing decreased. The thermal stability of the organoclay was determined by a combination of thermogravimetry and infrared emission spectroscopy. The surfactant molecule DDOAB combusts at 166, 244 and 304 degrees Celsius and upon intercalation into Na-montmorillonite is retained up to 389 degrees Celsius thus showing the organoclay is stable to significantly high temperatures well above the combustion/decomposition temperature of the organoclay.

Impact and interest:

30 citations in Scopus
Search Google Scholar™
30 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

302 since deposited on 04 May 2007
16 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 7419
Item Type: Journal Article
Keywords: adsorption, intercalation, montmorillonite, organo, clay, infrared spectroscopy, emission, paranitrophenol
DOI: 10.1016/j.jcis.2007.02.039
ISSN: 0021-9797
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Colloid and Surface Chemistry (030603)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2007 Elsevier
Copyright Statement: Reproduced in accordance with the copyright policy of the publisher.
Deposited On: 04 May 2007
Last Modified: 29 Feb 2012 23:37

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page