Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties

Galpaya, Dilini, Wang, Mingchao, George, Graeme, Motta, Nunzio, Waclawik, Eric R., & Yan, Cheng (2014) Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties. Journal of Applied Physics, 116(5), 053518-1.

View at publisher (open access)

Abstract

The effect of graphene oxide (GO) on the mechanical properties and the curing reaction of Diglycidyl Ether of Bisphenol A/F and Triethylenetetramine epoxy system was investigated. GO was prepared by oxidation of graphite flakes and characterized by spectroscopic and microscopic techniques. Epoxy nanocomposites were fabricated with different GO loading by solution mixing technique. It was found that incorporation of small amount of GO into the epoxy matrix significantly enhanced the mechanical properties of the epoxy. In particular, model I fracture toughness was increased by nearly 50% with the addition of 0.1 wt. % GO to epoxy. The toughening mechanism was understood by fractography analysis of the tested samples. The more irregular, coarse, and multi-plane fracture surfaces of the epoxy/GO nanocomposites were observed. This implies that the two-dimensional GO sheets effectively disturbed and deflected the crack propagation. At 0.5 wt. % GO, elastic modulus was ~35% greater than neat epoxy. Differential scanning calorimetry (DSC) results showed that GO addition moderately affect the glass transition temperature (Tg) of epoxy. The maximum decrease of Tg by ~7 oC was shown for the nanocomposite with 0.5 wt. % GO. DSC results further revealed that GO significantly hindered the cure reaction in the epoxy system.

Impact and interest:

14 citations in Scopus
13 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

135 since deposited on 06 Aug 2014
30 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 74768
Item Type: Journal Article
Refereed: Yes
Keywords: Graphene oxide, Epoxy nanocomposite, Mechanical performance, Cure reaction
DOI: 10.1063/1.4892089
ISSN: 1089-7550
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200) > Composite and Hybrid Materials (091202)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Funding:
Copyright Owner: Copyright 2014 AIP Publishing LLC.
Deposited On: 06 Aug 2014 22:32
Last Modified: 01 Jul 2015 10:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page