Prediction of thermal expansion properties of carbon nanotubes using molecular dynamics simulations

Alamusi, Hu, Ning, Jia, Bi, Arai, Masahiro, Yan, Cheng, Li, Jinhua, Liu, Yaolu, Atobe, Satoshi, & Fukunaga, Hisao (2012) Prediction of thermal expansion properties of carbon nanotubes using molecular dynamics simulations. Computational Materials Science, 54, pp. 249-254.

View at publisher


The axial coefficients of thermal expansion (CTE) of various carbon nanotubes (CNTs), i.e., single-wall carbon nanotubes (SWCNTs), and some multi-wall carbon nanotubes (MWCNTs), were predicted using molecular dynamics (MDs) simulations. The effects of two parameters, i.e., temperature and the CNT diameter, on CTE were investigated extensively. For all SWCNTs and MWCNTs, the obtained results clearly revealed that within a wide low temperature range, their axial CTEs are negative. As the diameter of CNTs decreases, this temperature range for negative axial CTEs becomes narrow, and positive axial CTEs appear in high temperature range. It was found that the axial CTEs vary nonlinearly with the temperature, however, they decrease linearly as the CNT diameter increases. Moreover, within a wide temperature range, a set of empirical formulations was proposed for evaluating the axial CTEs of armchair and zigzag SWCNTs using the above two parameters. Finally, it was found that the absolute value of the negative axial CTE of any MWCNT is much smaller than those of its constituent SWCNTs, and the average value of the CTEs of its constituent SWCNTs. The present fundamental study is very important for understanding the thermal behaviors of CNTs in such as nanocomposite temperature sensors, or nanoelectronics devices using CNTs.

Impact and interest:

26 citations in Scopus
12 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

57 since deposited on 14 Aug 2014
12 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 75024
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: Thermal property, Carbon nanotube, Molecular dynamics
DOI: 10.1016/j.commatsci.2011.10.015
ISSN: 0927-0256
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MATERIALS ENGINEERING (091200) > Composite and Hybrid Materials (091202)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2011 Elsevier B.V.
Copyright Statement: NOTICE: this is the author’s version of a work that was accepted for publication in Computational Materials Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computational Materials Science, [Volume 54, (March 2012)] DOI: 10.1016/j.commatsci.2011.10.015
Deposited On: 14 Aug 2014 06:05
Last Modified: 15 Aug 2014 10:33

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page