QUT ePrints

C-Net: a method for generating non-deterministic and dynamic multivariate decision trees

Abbass, Hussein A., Towsey, Michael W., & Finn, Gerard D. (2001) C-Net: a method for generating non-deterministic and dynamic multivariate decision trees. Knowledge and Information Systems, 3(2), pp. 184-197.

View at publisher

Abstract

Despite the fact that artificial neural networks (ANNs) are universal function approximators, their black box nature (that is, their lack of direct interpretability or expressive power) limits their utility. In contrast, univariate decision trees (UDTs) have expressive power, usually though they are not as accurate as ANNs. We propose an improvement, C-Net, for both the expressiveness of ANNs and the accuracy of UDTs by consolidating both technologies for generating multivariate decision trees (MDTs). In addition, we introduce a new concept, recurrent decision trees, where C-Net uses recurrent neural networks to generate an MDT with a recurrent feature. That is, a memory is associated with each node in the tree with a recursive condition which replaces the conventional linear one. Furthermore, we show empirically that, in our test cases, our proposed method achieves a balance of comprehensibility and accuracy intermediate between ANNs and UDTs. MDTs are found to be intermediate since they are more expressive than ANNs and, more accurate than UDTs. Moreover, in all cases MDTs are more compact (i.e. smaller tree size) than UDTs.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

179 since deposited on 11 May 2007
24 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 7577
Item Type: Journal Article
Keywords: multivariate decision trees, neural networks, univariate decision trees
DOI: 10.1007/PL00011665
ISSN: 0219-3116
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Neural Evolutionary and Fuzzy Computation (080108)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Artificial Intelligence and Image Processing not elsewhere classified (080199)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2001 Springer
Copyright Statement: The original publication is available at SpringerLink http://www.springerlink.com
Deposited On: 11 May 2007
Last Modified: 09 Jun 2010 22:40

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page