Effect of temperature and moisture on high pressure lipid/oil extraction from microalgae

Islam, Muhammad Aminul, Brown, Richard J., O’Hara, Ian, Kent, Megan, & Heimann, Kirsten (2014) Effect of temperature and moisture on high pressure lipid/oil extraction from microalgae. Energy Conversion and Management, 88, pp. 307-316.

View at publisher


Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.

Impact and interest:

5 citations in Scopus
Search Google Scholar™
6 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

6 since deposited on 08 Sep 2014
4 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 76005
Item Type: Journal Article
Refereed: Yes
Keywords: Microalgae, Lipid extraction, Optimisation, Fuel property, biodiesel
DOI: 10.1016/j.enconman.2014.08.038
ISSN: 01968904
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100) > Biochemistry and Cell Biology not elsewhere classified (060199)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > AUTOMOTIVE ENGINEERING (090200) > Automotive Combustion and Fuel Engineering (incl. Alternative/Renewable Fuels) (090201)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 Elsevier Ltd.
Copyright Statement: NOTICE: this is the author’s version of a work that was accepted for publication in Energy Conversion and Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Energy Conversion and Management, [Volume 88, (December 2014)] DOI: 10.1016/j.enconman.2014.08.038
Deposited On: 08 Sep 2014 23:27
Last Modified: 01 Dec 2016 18:29

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page