Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFβ-mediated axonogenesis

Stegeman, Shane, Jolly, Lachlan, Premarathne, Susitha, Gecz, Jozef, Richards, Linda, Mackay-Sim, Alan, & Wood, Stephen (2013) Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFβ-mediated axonogenesis. PLoS ONE, 8(7), e68287.

View at publisher (open access)

Abstract

The deubiquitylating enzyme Usp9x is highly expressed in the developing mouse brain, and increased Usp9x expression enhances the self-renewal of neural progenitors in vitro. USP9X is a candidate gene for human neurodevelopmental disorders, including lissencephaly, epilepsy and X-linked intellectual disability. To determine if Usp9x is critical to mammalian brain development we conditionally deleted the gene from neural progenitors, and their subsequent progeny. Mating Usp9xloxP/loxP mice with mice expressing Cre recombinase from the Nestin promoter deleted Usp9x throughout the entire brain, and resulted in early postnatal lethality. Although the overall brain architecture was intact, loss of Usp9x disrupted the cellular organization of the ventricular and sub-ventricular zones, and cortical plate. Usp9x absence also led to dramatic reductions in axonal length, in vivo and in vitro, which could in part be explained by a failure in Tgf-β signaling. Deletion of Usp9x from the dorsal telencephalon only, by mating with Emx1-cre mice, was compatible with survival to adulthood but resulted in reduction or loss of the corpus callosum, a dramatic decrease in hippocampal size, and disorganization of the hippocampal CA3 region. This latter phenotypic aspect resembled that observed in Doublecortin knock-out mice, which is an Usp9x interacting protein. This study establishes that Usp9x is critical for several aspects of CNS development, and suggests that its regulation of Tgf-β signaling extends to neurons.

Impact and interest:

15 citations in Scopus
Search Google Scholar™
16 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

3 since deposited on 07 Oct 2014
3 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 77222
Item Type: Journal Article
Refereed: Yes
DOI: 10.1371/journal.pone.0068287
ISSN: 1932-6203
Copyright Owner: Copyright 2013 Stegeman et al.
Copyright Statement: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Deposited On: 07 Oct 2014 07:04
Last Modified: 17 Nov 2016 04:22

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page