Using the Driver Behaviour Questionnaire to predict crashes and demerit point loss : does it get better with larger sample sizes?

Freeman, J., Wishart, D., Rowland, B., Barraclough, P., Davey, J., & Darvell, M. (2014) Using the Driver Behaviour Questionnaire to predict crashes and demerit point loss : does it get better with larger sample sizes? In Occupational Safety in Transport Conference, 18 - 19 September 2014, Crowne Plaza Surfers Paradise, Gold Coast, QLD.

View at publisher (open access)

Abstract

The Driver Behaviour Questionnaire (DBQ) continues to be the most widely utilised self-report scale globally to assess crash risk and aberrant driving behaviours among motorists. However, the scale also attracts criticism regarding its perceived limited ability to accurately identify those most at risk of crash involvement. This study reports on the utilisation of the DBQ to examine the self-reported driving behaviours (and crash outcomes) of drivers in three separate Australian fleet samples (N = 443, N = 3414, & N = 4792), and whether combining the samples increases the tool’s predictive ability. Either on-line or paper versions of the questionnaire were completed by fleet employees in three organisations. Factor analytic techniques identified either three or four factor solutions (in each of the separate studies) and the combined sample produced expected factors of: (a) errors, (b) highway-code violations and (c) aggressive driving violations. Highway code violations (and mean scores) were comparable across the studies. However, across the three samples, multivariate analyses revealed that exposure to the road was the best predictor of crash involvement at work, rather than DBQ constructs. Furthermore, combining the scores to produce a sample of 8649 drivers did not improve the predictive ability of the tool for identifying crashes (e.g., 0.4% correctly identified) or for demerit point loss (0.3%). The paper outlines the major findings of this comparative sample study in regards to utilising self-report measurement tools to identify “at risk” drivers as well as the application of such data to future research endeavours.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

69 since deposited on 12 Nov 2014
26 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 77615
Item Type: Conference Paper
Refereed: Yes
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > PUBLIC HEALTH AND HEALTH SERVICES (111700) > Environmental and Occupational Health and Safety (111705)
Divisions: Current > Research Centres > Centre for Accident Research & Road Safety - Qld (CARRS-Q)
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Psychology & Counselling
Copyright Owner: Copyright 2014 [please consult the author]
Deposited On: 12 Nov 2014 01:12
Last Modified: 14 Nov 2014 07:01

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page