Porohyperelastic finite element model for the kangaroo humeral head cartilage based on experimental study and the consolidation theory

Thibbotuwawa, Namal, Li, Tong, & Gu, YuanTong (2014) Porohyperelastic finite element model for the kangaroo humeral head cartilage based on experimental study and the consolidation theory. In Liu, Gui-Rong & Guan, Zhongwei (Eds.) Proceedings of the International Conference on Computational Methods, ScienTech, Cambridge, England.

View at publisher (open access)


Solid-extracellular fluid interaction is believed to play an important role in the strain-rate dependent mechanical behaviors of shoulder articular cartilages. It is believed that the kangaroo shoulder joint is anatomically and biomechanically similar to human shoulder joint and it is easy to get in Australia. Therefore, the kangaroo humeral head cartilage was used as the suitable tissue for the study in this paper. Indentation tests from quasi-static (10-4/sec) to moderately high strain-rate (10-2/sec) on kangaroo humeral head cartilage tissues were conduced to investigate the strain-rate dependent behaviors. A finite element (FE) model was then developed, in which cartilage was conceptualized as a porous solid matrix filled with incompressible fluids. In this model, the solid matrix was modeled as an isotropic hyperelastic material and the percolating fluid follows Darcy’s law. Using inverse FE procedure, the constitutive parameters related to stiffness, compressibility of the solid matrix and permeability were obtained from the experimental results. The effect of solid-extracellular fluid interaction and drag force (the resistance to fluid movement) on strain-rate dependent behavior was investigated by comparing the influence of constant, strain dependent and strain-rate dependent permeability on FE model prediction. The newly developed porohyperelastic cartilage model with the inclusion of strain-rate dependent permeability was found to be able to predict the strain-rate dependent behaviors of cartilages.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

62 since deposited on 23 Oct 2014
12 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 77952
Item Type: Conference Paper
Refereed: Yes
Keywords: Solid-extracellular fluid interaction, Strain-rate dependent behavior, Porohyperelasticity, Drag force, , Finite element method
ISSN: 2374-3948
Subjects: Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > OTHER PHYSICAL SCIENCES (029900) > Biological Physics (029901)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 [please consult the author]
Deposited On: 23 Oct 2014 01:27
Last Modified: 24 Oct 2014 07:03

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page