Large-scale analysis of soccer matches using spatiotemporal tracking data

Bialkowski, Alina, Lucey, Patrick J., Carr, Peter, Yue, Yisong, Sridharan, Sridha, & Matthews, Iain (2014) Large-scale analysis of soccer matches using spatiotemporal tracking data. In IEEE International Conference on Data Mining (ICDM 2014), 14-17 December 2014, Shenzhen, China.


Although the collection of player and ball tracking data is fast becoming the norm in professional sports, large-scale mining of such spatiotemporal data has yet to surface. In this paper, given an entire season's worth of player and ball tracking data from a professional soccer league (approx 400,000,000 data points), we present a method which can conduct both individual player and team analysis. Due to the dynamic, continuous and multi-player nature of team sports like soccer, a major issue is aligning player positions over time. We present a "role-based" representation that dynamically updates each player's relative role at each frame and demonstrate how this captures the short-term context to enable both individual player and team analysis. We discover role directly from data by utilizing a minimum entropy data partitioning method and show how this can be used to accurately detect and visualize formations, as well as analyze individual player behavior.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

56 since deposited on 29 Oct 2014
40 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 78124
Item Type: Conference Paper
Refereed: Yes
Additional URLs:
Keywords: Sports Analytics, Spatiotemporal Tracking Data, Formation, Role
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Artificial Intelligence and Image Processing not elsewhere classified (080199)
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 IEEE
Copyright Statement: Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Deposited On: 29 Oct 2014 22:37
Last Modified: 02 Feb 2015 05:08

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page