Looming aircraft threats : shape-based passive ranging of aircraft from monocular vision

Molloy, Timothy L., Ford, Jason J., & Mejias, Luis (2014) Looming aircraft threats : shape-based passive ranging of aircraft from monocular vision. In Australian Conference on Robotics and Automation 2014, 2-4 December 2014, The University of Melbourne, Melbourne, VIC.


This paper proposes new techniques for aircraft shape estimation, passive ranging, and shape-adaptive hidden Markov model filtering which are suitable for a monocular vision-based non-cooperative collision avoidance system. Vision-based passive ranging is an important missing technology that could play a significant role in resolving the sense-and-avoid problem in un-manned aerial vehicles (UAVs); a barrier hindering the wider adoption of UAVs for civilian applications. The feasibility of the pro- posed shape estimation, passive ranging and shape-adaptive filtering techniques is evaluated on flight test data.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

64 since deposited on 02 Nov 2014
15 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 78266
Item Type: Conference Paper
Refereed: Yes
Additional URLs:
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Control Systems Robotics and Automation (090602)
Divisions: Current > Schools > School of Electrical Engineering & Computer Science
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 [please consult the author]
Deposited On: 02 Nov 2014 22:48
Last Modified: 08 Dec 2014 12:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page