Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors

Music, Ena, Khan, Saad, Khamis, Imran, & Heikkila, John J. (2014) Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors. Comparative Biochemistry and Physiology Part C : Toxicology & Pharmacology, 166, pp. 75-87.

View at publisher

Abstract

The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.

Impact and interest:

3 citations in Scopus
Search Google Scholar™
2 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

19 since deposited on 04 Nov 2014
14 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 78347
Item Type: Journal Article
Refereed: Yes
Keywords: Xenopus, Heavy metals, Proteasome, Stress, Heat shock proteins
DOI: 10.1016/j.cbpc.2014.07.007
ISSN: 1532-0456
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000)
Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100)
Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > ZOOLOGY (060800) > Animal Cell and Molecular Biology (060802)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > PHARMACOLOGY AND PHARMACEUTICAL SCIENCES (111500) > Toxicology (incl. Clinical Toxicology) (111506)
Divisions: Current > Schools > School of Biomedical Sciences
Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Funding:
  • NSERC/NSERC-RGPIN2820-09 29883
Copyright Owner: Copyright 2014 Elsevier
Copyright Statement: This is the author’s version of a work that was accepted for publication in Comparative Biochemistry and Physiology Part C. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Comparative Biochemistry and Physiology Part C, [VOL 166, (2014)] DOI: 10.1016/j.cbpc.2014.07.007
Deposited On: 04 Nov 2014 23:04
Last Modified: 17 Jul 2015 20:49

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page