Quantitation of gammaH2AX foci in tissue samples

Tang, Michelle M., Mah, Li-Jeen, Vasireddy, Raja S., Georgiadis, George T., El-Osta, Assam, Royce, Simon G., & Karagiannis, Tom C. (2010) Quantitation of gammaH2AX foci in tissue samples. Journal of Visualized Experiments, 40, e2063-1.

View at publisher (open access)


DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.

Impact and interest:

2 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

26 since deposited on 24 Nov 2014
11 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 78911
Item Type: Journal Article
Refereed: Yes
Keywords: cellular biology, immunoflourescence, DNA double-strand breaks, histone variant, H2AX, DNA damage, ionising radiation, reactive oxygen species
DOI: 10.3791/2063
ISSN: 1940-087X
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > ONCOLOGY AND CARCINOGENESIS (111200)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Copyright Owner: Copyright 2010 Journal of Visualized Experiments
Deposited On: 24 Nov 2014 23:08
Last Modified: 26 Nov 2014 04:24

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page