Influences of molecular structure on co-crystallization of polypyridyl metal complexes.

Bouzaid, Jocelyne M., Schultz, Madeleine, Lao, Zane, Bostrom, Thor E., & McMurtrie, John (2015) Influences of molecular structure on co-crystallization of polypyridyl metal complexes. Crystal Growth & Design, 15(1), pp. 62-69.

View at publisher

Abstract

Heteroleptic complexes of the type [RuL2L′](PF6)2 (L, L′ = combinations of 1,10-phenanthroline (phen) and 2,2′-bipyridine (bipy)) were found to cocrystallize with [Ni(phen)3](PF6)2 to produce cocrystals of [Ni(phen)3]x[RuL2L′]1–x(PF6)2. In this report we show that the ability of the complexes to cocrystallize is influenced by the number of common ligands between complexes in solution. Supramolecular selection is a phenomenon caused by molecular recognition through which cocrystals can grow from the same solution but contain different ratios of the molecular components. It was found that systems where L = phen displayed less supramolecular selection than systems where L = bipy. With increasing supramolecular selection, the composition of cocrystals was found to vary significantly from the initial relative concentration in the cocrystallizing solution, and therefore it was increasingly difficult to control the final composition of the resultant cocrystals. Consequently, modulation of concentration-dependent properties such as phase was also found to be less predictable with increasing supramolecular selection. Notwithstanding the complication afforded by the presence of supramolecular selection, our results reaffirm the robustness of the [M(phen)3](PF6)2 structure because it was maintained even when ca. 90% of the complexes in the cocrystals were [Ru(phen)(bipy)2](PF6)2, which in its pure form is not isomorphous with [M(phen)3](PF6)2. Experiments between complexes without common ligands, i.e., [Ru(bipy)3](PF6)2 cocrystallized with [Ni(phen)3](PF6)2, were found to approach the limit to which molecular recognition processes can be confused into cocrystallizing different molecules to form single cocrystals. For these systems the result was the formation of block-shaped crystals skewered by a needle-shaped crystals.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 79724
Item Type: Journal Article
Refereed: Yes
Additional Information: Special Issue
Published as part of the Crystal Growth & Design virtual special issue IYCr 2014 - Celebrating the International Year of Crystallography
Keywords: cocrystallisation, supramolecular selection, fused crystals
DOI: 10.1021/cg500869q
ISSN: 1528-7505
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > INORGANIC CHEMISTRY (030200) > Transition Metal Chemistry (030207)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > MACROMOLECULAR AND MATERIALS CHEMISTRY (030300) > Nanochemistry and Supramolecular Chemistry (030302)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 American Chemical Society
Deposited On: 06 Jan 2015 04:38
Last Modified: 18 Jan 2016 04:50

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page