Towards a quantitative theory of epidermal calcium profile formation in unwounded skin

Adams, Matthew P., Mallet, Daniel G., & Pettet, Graeme J. (2015) Towards a quantitative theory of epidermal calcium profile formation in unwounded skin. PLOS ONE, 10(1), e0116751.

View at publisher (open access)

Abstract

We propose and mathematically examine a theory of calcium profile formation in unwounded mammalian epidermis based on: changes in keratinocyte proliferation, fluid and calcium exchange with the extracellular fluid during these cells' passage through the epidermal sublayers, and the barrier functions of both the stratum corneum and tight junctions localised in the stratum granulosum. Using this theory, we develop a mathematical model that predicts epidermal sublayer transit times, partitioning of the epidermal calcium gradient between intracellular and extracellular domains, and the permeability of the tight junction barrier to calcium ions. Comparison of our model's predictions of epidermal transit times with experimental data indicates that keratinocytes lose at least 87% of their volume during their disintegration to become corneocytes. Intracellular calcium is suggested as the main contributor to the epidermal calcium gradient, with its distribution actively regulated by a phenotypic switch in calcium exchange between keratinocytes and extracellular fluid present at the boundary between the stratum spinosum and the stratum granulosum. Formation of the extracellular calcium distribution, which rises in concentration through the stratum granulosum towards the skin surface, is attributed to a tight junction barrier in this sublayer possessing permeability to calcium ions that is less than 15 nm/s in human epidermis and less than 37 nm/s in murine epidermis. Future experimental work may refine the presented theory and reduce the mathematical uncertainty present in the model predictions.

Impact and interest:

2 citations in Scopus
5 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

33 since deposited on 09 Jan 2015
8 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 79938
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: epidermis, calcium gradient, tight junctions, skin barrier, porous medium
DOI: 10.1371/journal.pone.0116751
ISSN: 1932-6203
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Mathematical Sciences
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2015 Adams et al.
Copyright Statement: This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Deposited On: 09 Jan 2015 04:57
Last Modified: 09 Jun 2015 14:16

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page