Deformation of a three-dimensional red blood cell in a stenosed micro-capillary

Polwaththe-Gallage, Hasitha-Nayanajith, Saha, Suvash C., & Gu, YuanTong (2014) Deformation of a three-dimensional red blood cell in a stenosed micro-capillary. In 8th Australasian Congress on Applied Mechanics (ACAM 8), 23-26 November 2014, Melbourne, Australia.


Red blood cells (RBCs) exhibit different types of motions and deformations when the blood flows through capillaries. Interestingly, due to the complex three-dimensional structure of the RBC membrane, RBCs show three-dimensional motions and deformations in the blood flow. These motions and deformations of the RBCs highly depend on the stiffness of the RBC membrane and on the geometrical parameters of the capillary through which blood flows. However, capillaries always do not have uniform cross sections and some capillaries have stenosed segments, where cross sectional area suddenly reduces. Further, some diseases can alter the stiffness of the RBC membrane drastically. In this study, the deformation behaviour of a single three-dimensional RBC is examined, when it moves through a stenosed capillary. A three-dimensional spring network is used to model the RBC membrane. The RBC’s inside and outside fluids are discretized into a finite number of mass points and treated by smoothed particle hydrodynamics (SPH) method. The capillary is considered as a rigid tube with a stenosed section. The deformation index, mean velocity and total energy of the RBC are analysed when it flows through the stenosed capillary. Further, motion and deformation of the RBCs with different membrane stiffness (KB) are compared when they flow through the stenosed segment of the capillary. The simulation results demonstrate the RBCs are subjected to a larger deformation when they move through the stenosed part of the capillary and the RBCs with lower KBvalues easily pass through the stenosed segment of the capillary. Further, RBCs having higher KBvalues have a lower mean velocity and it leads to slow down the overall blood flow rate

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

73 since deposited on 14 Jan 2015
18 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 80029
Item Type: Conference Paper
Refereed: Yes
Additional URLs:
Keywords: Meshfree Methods, Microcirculation, Numerical Simulations, Red Blood Cell (RBC), Smoothed Particle Hydrodynamics (SPH), Stenosed Capillary, Three-dimensional (3-d)
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomechanical Engineering (090302)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Numerical Modelling and Mechanical Characterisation (091307)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 [please consult the authors]
Deposited On: 14 Jan 2015 23:05
Last Modified: 17 Jan 2015 01:20

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page