Transmittance properties of contact lens multipurpose solutions and their effects on a hydrogel lens

Ogbuehi, Kelechi, Khan, Faisal M.J., Alanazi, Saud A., AlMubrad, Turki M., & Osuagwu, Uchechukwu L. (2014) Transmittance properties of contact lens multipurpose solutions and their effects on a hydrogel lens. Annual Research & Review in Biology, 4(15), pp. 2484-2500.

View at publisher (open access)



The aim was to assess the compatibility of different multipurpose solutions (MPSs) with one type of silicone hydrogel (SiH) contact lens by, assessing the changes in both ultraviolet (UV) and visible light transmissibility of the hydrogel lens caused by the MPSs.


The light transmittance from 200-700 nm were measured for the lotrafilcon B blister pack solution (BPS), six MPSs namely, ReNuMultiPlus Multi-Purpose Solution (Bausch and Lomb Inc., Rochester NY, USA.); Complete RevitaLens Multi-Purpose (Abbott Medical Optics Inc., Quarryvale Co. Dublin, Ireland); All In One Light (Sauflon Pharmaceuticals Ltd., Twickenham, England); SOLO-care AQUA™ (Ciba Vision Corporation Duluth, Georgia, USA.); Biomedics All-in-one solution (CooperVision, Hamble, UK); and HippiaMultiPlus All-in-one solution (Interojo Inc., Kyeonggi-do, Korea), and a lotrafilcon B SiH lens (before and after storage), using a spectrophotometer.


The UV transmitted through the BPS and the MPS were similar (p >.05, for all), except for the HippiaMultiPlus which was lower (p < 0.001) by 19.8%. Mean transparency values were statistically (p<.001) significantly different between the BPS and the MPSs. All MP solution/SiH lens combinations resulted in relatively high UV transmittance values especially in the UVC spectrum, and significantly increased (p <.001) the visible light transmittance values of the SiH lens. Greater changes in transparency were observed in the ReNu/SiH lens (28.5%) and the Complete RevitaLens/SiH lens (24.9%) combinations.


The six MPSs showed significant variations in the transmitted UV and visible light. Similar to the BPS, all MPSs were equally transparent, but showed very poor UVA & UVB attenuation, except for the Hippia MultiPlus. The MPS/SiH lens combinations did not significantly affect the lens transparency but it significant increased the lens transmittance of UV radiation, after storage. Further in-vivo studies are needed to validate if this effect is constant.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

22 since deposited on 11 Feb 2015
10 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 81746
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: Contact lens, Multipurpose Solution (MPS), Blister Pack Solution, ultraviolet, electromagnetic spectrum, light transmission
DOI: 10.9734/ARRB/2014/7934
ISSN: 2347-565X
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > OPTOMETRY AND OPHTHALMOLOGY (111300) > Optical Technology (111302)
Australian and New Zealand Standard Research Classification
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Current > Schools > School of Optometry & Vision Science
Copyright Owner: Copyright 2014 Ogbuehi et al.;
Copyright Statement: This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
Deposited On: 11 Feb 2015 22:43
Last Modified: 13 Feb 2015 20:52

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page