Co-optimisation of indoor environmental quality and energy consumption within urban office buildings

Quang, Tran Ngoc, He, Congrong, Knibbs, Luke D., de Dear, Richard, & Morawska, Lidia (2014) Co-optimisation of indoor environmental quality and energy consumption within urban office buildings. Energy and Buildings, 85, pp. 225-234.


View at publisher


This study aimed to develop a multi-component model that can be used to maximise indoor environmental quality inside mechanically ventilated office buildings, while minimising energy usage. The integrated model, which was developed and validated from fieldwork data, was employed to assess the potential improvement of indoor air quality and energy saving under different ventilation conditions in typical air-conditioned office buildings in the subtropical city of Brisbane, Australia. When operating the ventilation system under predicted optimal conditions of indoor environmental quality and energy conservation and using outdoor air filtration, average indoor particle number (PN) concentration decreased by as much as 77%, while indoor CO2 concentration and energy consumption were not significantly different compared to the normal summer time operating conditions. Benefits of operating the system with this algorithm were most pronounced during the Brisbane’s mild winter. In terms of indoor air quality, average indoor PN and CO2 concentrations decreased by 48% and 24%, respectively, while potential energy savings due to free cooling went as high as 108% of the normal winter time operating conditions. The application of such a model to the operation of ventilation systems can help to significantly improve indoor air quality and energy conservation in air-conditioned office buildings.

Impact and interest:

7 citations in Scopus
5 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

6 since deposited on 24 Feb 2015
4 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 82008
Item Type: Journal Article
Refereed: Yes
Keywords: particle number, outdoor air flow rate, temperature, CO2, multi-component model, optimum
DOI: 10.1016/j.enbuild.2014.09.021
ISSN: 0378-7788
Subjects: Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > ATMOSPHERIC SCIENCES (040100) > Atmospheric Aerosols (040101)
Australian and New Zealand Standard Research Classification > ENVIRONMENTAL SCIENCES (050000) > ENVIRONMENTAL SCIENCE AND MANAGEMENT (050200) > Environmental Monitoring (050206)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ENVIRONMENTAL ENGINEERING (090700) > Environmental Engineering not elsewhere classified (090799)
Australian and New Zealand Standard Research Classification > BUILT ENVIRONMENT AND DESIGN (120000) > OTHER BUILT ENVIRONMENT AND DESIGN (129900) > Built Environment and Design not elsewhere classified (129999)
Divisions: Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Copyright Owner: Copyright 2014 Elsevier B.V.
Copyright Statement: NOTICE: this is the author’s version of a work that was accepted for publication in Energy and Buildings. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Energy and Buildings, Volume 85, (December 2014), DOI: 10.1016/j.enbuild.2014.09.021
Deposited On: 24 Feb 2015 23:32
Last Modified: 26 Jun 2017 16:19

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page